پایان نامه بررسی نسبت ­های شکل پذیری در روش طراحی بر اساس عملکرد در قاب­

پایان نامه بررسی نسبت ­های شکل پذیری در روش طراحی بر اساس عملکرد در قاب­

پایان­ نامه برای دریافت درجه کارشناسی ارشد

رشته مهندسی عمران گرایش سازه

عنوان :بررسی نسبت ­های شکل پذیری در روش طراحی بر اساس عملکرد در قیاس با روش­ های تجویزی در قاب­ های ساده فلزی بهمراه مهاربند هم­ محور



با فرمت قابل ویرایش word

تعداد صفحات: 98  صفحه

تکه های از متن به عنوان نمونه :

فهرست مطالب

فهرست مطالب

فصل 1: مقدمه............................................................................................................................................................................................................... 7

1-1-مقدمه.................................................................................................................................................................................................................. 8

فصل 2: مروری بر ادبیات موضوع................................................................................................................................................................. 13

2-1-مقدمه.............................................................................................................................................................................................................. 14

2-2-روش طراحی لرزه ای بر اساس روش تجویزی..................................................................................................................... 15

2-2-1-عوامل مؤثر بر ضریب کاهش نیروی زلزله................................................................................................................. 18

2-2-1-1-شکل پذیری.................................................................................................................................................................... 18

2-2-1-1-1-ضریب شکل پذیری کلی سازه.............................................................................................................. 19

2-2-1-1-2-ضریب کاهش بر اثر شکل پذیری........................................................................................................ 20

2-2-1-2-مقاومت افزون................................................................................................................................................................ 25

2-2-1-2-1-ضریب مقاومت افزون................................................................................................................................... 27

2-2-2-شکل پذیری در روش طراحی براساس روش تجویزی...................................................................................... 29

2-3-روش طراحی لرزه­ای براساس عملکرد سازه.......................................................................................................................... 30

2-3-1-فواید طراحی براساس عملکرد........................................................................................................................................... 31

2-3-2-شکل­پذیری در روش طراحی براساس عملکرد....................................................................................................... 32

2-3-3-معیارهای پذیرش اعضا در روش طراحی براساس عملکرد............................................................................. 34

2-3-4-فلسفه ی طراحی براساس عملکرد................................................................................................................................. 35

2-4-مروری بر یافته های دیگر محققین............................................................................................................................................. 36

2-4-1-تحقیقات طاهری بهبهانی..................................................................................................................................................... 36

2-4-2-تحقیقات Repapis و همکاران..................................................................................................................................... 37

2-4-3-تحقیقات Kunnath و همکاران................................................................................................................................... 38

2-4-4-تحقیقات Elnashai و همکاران...................................................................................................................................... 39

2-5-جمع بندی و نتیجه گیری................................................................................................................................................................ 40

فصل 3: روش تحقیق............................................................................................................................................................................................. 42

3-1-مقدمه.............................................................................................................................................................................................................. 43

3-2-معرفی نمونه ها......................................................................................................................................................................................... 43

3-2-1-تعیین جزئیات سازه ای........................................................................................................................................................ 44

3-2-1-1-مدلسازی و هندسه..................................................................................................................................................... 44

3-2-1-2-بارگذاری............................................................................................................................................................................ 45

3-2-1-3-نتایج طراحی نمونه ها............................................................................................................................................... 48

3-3-ارزیابی............................................................................................................................................................................................................. 50

3-3-1-مدلسازی......................................................................................................................................................................................... 50

3-3-1-1-مدلسازی کلی سازه................................................................................................................................................... 50

3-3-1-2-مدلسازی اعضا............................................................................................................................................................... 51

3-3-1-3-مدلسازی رفتار مصالح.............................................................................................................................................. 52

3-3-1-4-مقاومت اعضای سازهای......................................................................................................................................... 52

3-3-1-5-بررسی منحنی رفتاری اعضاء.............................................................................................................................. 53

3-3-2-بررسی نرم افزارهای کاربردی........................................................................................................................................... 54

3-3-3-بررسی مشخصه های تحلیل نمونه ها.......................................................................................................................... 54

3-3-3-1-روش تحلیل.................................................................................................................................................................... 54

3-3-3-2-بارگذاری............................................................................................................................................................................ 55

3-3-3-2-1-الگوی بارگذاری............................................................................................................................................... 56

3-3-3-3-تغییر مکان هدف......................................................................................................................................................... 56

فصل 4: نتایج و تفسیر.......................................................................................................................................................................................... 61

4-1-مقدمه.............................................................................................................................................................................................................. 62

4-2-بررسی نتایج................................................................................................................................................................................................ 63

4-2-1-بررسی نتایج و تعیین ضرایب نمونه سه طبقه......................................................................................................... 66

4-2-2-بررسی نتایج و تعیین ضرایب نمونه پنج طبقه........................................................................................................ 69

4-2-3-بررسی نتایج و تعیین ضرایب نمونه هفت طبقه..................................................................................................... 72

4-2-4-بررسی نتایج حاصل از شکل پذیری سازه................................................................................................................. 72

4-3-تعیین عملکرد لرزهای اعضاء........................................................................................................................................................... 74

4-3-1-عملکرد لرزهای اعضا در ساختمان سه طبقه......................................................................................................... 79

4-3-2-عملکرد لرزهای اعضا در ساختمان پنج طبقه........................................................................................................ 84

4-3-3-عملکرد لرزهای اعضا در ساختمان هفت طبقه..................................................................................................... 89

 

فصل 5: جمع بندی و نتیجه گیری............................................................................................................................................................. 90

5-1-جمع بندی................................................................................................................................................................................................... 91

منابع و مراجع............................................................................................................................................................................................................ 95

 

فهرست اشکال

شکل(2-1) ارتباط بین ضریب کاهش نیرو ، اضافه مقاومت ، ضریب کاهش به علت شکل پذیری و ضریب شکل پذیری     19

شکل(2-2) منحنی نیرو- تغییر شکل عضو............................................................................................................................................ 32

شکل(2-3) معیارهای پذیرش اعضا در سطوح مختلف عملکردی.......................................................................................... 34

شکل(2-4) نتایج مطالعاتKunnath و همکاران.......................................................................................................................... 38

شکل(3-1) نمایی از قاب نمونههای مورد مطالعه در تعداد طبقات 3، 5 و 7.................................................................. 44

شکل(3-3) منحنی رفتاری عضو................................................................................................................................................................... 51

شکل(3-4) منحنی ساده شده برش پایه- تغییرمکان..................................................................................................................... 58

شکل (4-1) منحنی رفتاری ساختمان سه طبقه تحت الگوی بار نوع اول........................................................................ 64

شکل (4-2) وضعیت رفتاری ساختمان سه طبقه تحت الگوی بار نوع یک...................................................................... 64

شکل (4-3)منحنی رفتاری ساختمان سه طبقه تحت الگوی بار نوع دوم......................................................................... 65

شکل (4-4) وضعیت رفتاری ساختمان سه طبقه تحت الگوی بار نوع دوم...................................................................... 65

شکل(4-5) منحنی رفتاری ساختمان پنج طبقه تحت الگوی بار نوع اول......................................................................... 67

شکل (4-6) وضعیت رفتاری ساختمان پنج طبقه تحت الگوی بار نوع اول...................................................................... 67

شکل (4-7) منحنی رفتاری ساختمان پنج طبقه تحت الگوی بار نوع دوم...................................................................... 68

شکل (4-8) وضعیت رفتاری ساختمان پنج طبقه تحت الگوی بار نوع دوم..................................................................... 68

شکل (4-9) منحنی رفتاری ساختمان هفت طبقه تحت الگوی بار نوع اول.................................................................... 70

شکل (4-10) وضعیت رفتاری ساختمان هفت طبقه تحت الگوی بار نوع اول............................................................... 70

شکل (4-11) منحنی رفتاری ساختمان هفت طبقه تحت الگوی بار نوع دوم............................................................... 71

شکل (4-12) وضعیت رفتاری ساختمان هفت طبقه تحت الگوی بار نوع دوم.............................................................. 71

شکل(4-13) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت X............................. 75

شکل(4-14) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت X............................ 75

شکل(4-15) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت Y............................. 76

شکل(4-16) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت Y............................. 76

شکل(4-17) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت X............................ 77

شکل(4-18) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت X........................... 77

شکل(4-19) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت Y............................ 78

شکل(4-20) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت Y............................ 78

شکل(4-21) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت X............................. 80

شکل(4-22) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت X............................ 80

شکل(4-23) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت Y............................. 81

شکل(4-24) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت Y............................. 81

شکل(4-25) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت X............................ 82

شکل(4-26) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت X........................... 82

شکل(4-27) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت Y............................ 83

شکل(4-28) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت Y............................ 83

شکل(4-29) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت X............................. 85

شکل(4-30) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت X............................ 85

شکل(4-31) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع اول، جهت Y............................. 86

شکل(4-32) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع اول، جهت Y............................. 86

شکل(4-33) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت X............................ 87

شکل(4-34) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت X........................... 87

شکل(4-35) شکل پذیری متناظر اعضای فشاری در طبقات در توزیع بار نوع دوم، جهت Y............................ 88

شکل(4-36) شکل پذیری متناظر اعضای کششی در طبقات در توزیع بار نوع دوم، جهت Y............................ 88

 

فهرست جداول

(3-1) مقادیر ضریب بازتاب ( ) و ضریب زلزله ( ) در نمونه های مورد مطالعه. 47

جدول(3-2) مقاطع تیر، ستون و بادبند نمونه 3 طبقه. 48

جدول(3-3) مقاطع تیر، ستون و بادبند نمونه 5 طبقه. 49

جدول(3-4) مقاطع تیر،ستون و بادبند نمونه 7 طبقه. 49

جدول (3-5) مقادیر ... 59

جدول (3-6) مقادیر ضریب ...... 60

جدول (3-7) مقادیر ضریب ... 60

جدول(4-1) پارامترهای رفتاری ساختمان سه طبقه. 66

جدول(4-2) پارامترهای رفتاری ساختمان پنج طبقه. 69

جدول(4-3) پارامترهای رفتاری ساختمان پنج طبقه. 72

 

1-1-مقدمه

در سالهای اخیر فلسفه روش­های سنتی که در طراحی سازه در مقابل مخاطرات طبیعی بر مبنای آنها صورت میگرفت، دچار تغییرات عمده­ای شده است. تخریب گسترده سازه­های طراحی شده بر مبنای آئین­نامه­های قدیمی در زلزله­های اخیر، پیشرفت­های به وجود آمده در روشهای تحلیل و نیازهای عملکردی پیچیده­تر مورد انتظار صنایع ساختمانی منجر به معرفی روشهای موثرتری در طراحی سازه­ها شده­است. یکی از این روش­ها که در بسیاری از آئین­نامه­ها وجود دارد و سبب ساده­سازی مراحل طراحی میشود، روش تحلیل استاتیکی معادل میباشد که در آن نیروهای طراحی به وسیله ضریب رفتار کاهش داده میشوند. این روش بر این فرض استوار است که مقاومت سازه از مقداری که طراحی بر اساس آن صورت میگیرد، بزرگتر است و به علاوه سازه تحت زلزله با ورود به مرحله غیر خطی، بخشی از انرژی زلزله را جذب می­کند. طراحی لرزه­ای مطلوب برای ساختمان را می­توان دستیابی به سازه­ای با عملکرد مطلوب، به مفهوم امکان ایجاد خسارت کنترل شده و از قبل پیش­بینی شده در حین زلزله برای ساختمان دانست ضمن آنکه تخمین نادرست مشخصات زلزله و رفتار سازه و عملکرد آن در مواجهه با زلزله از دلایل مهم آسیب­های شدید وارد بر سازه میباشد. به جهت شناخت هر چه بهتر این مشخصات و ویژگی ها، در قبال روش­های تجویزی مرسوم در آئین­نامه­های پیشین که طراحی را بر اساس نیروهای کاهش یافته زلزله بیان میکرد، آئین­نامه­های طراحی و بهسازی لرزه­ای ارائه گردید که طبق آن طراحی لرزه­ای سازه به روش طراحی بر اساس عملکرد پیشنهاد میگردد.

به دلیل غیر اقتصادی بودن رفتار الاستیک سازه تحت زلزله، هدف اصلی در طراحی لرزه­ای ساختمان­ها بر این مبناست که رفتار ساختمان، در مقابل نیروی ناشی از زلزله­های کوچک بدون خسارت و در محدوده خطی مانده و در مقابل نیروهای ناشی از زلزله شدید، ضمن حفظ پایداری کلی خود، خسارت­های سازه­ای و غیر سازه­ای را تحمل کند. به همین دلیل مقاومت لرزه­ای که مورد نظر آئین­نامه­های طراحی در برابر زلزله است، عموما کمتر و در برخی موارد، خیلی کمتر از مقاومت جانبی مورد نیاز برای حفظ پایداری سازه در محدوده ارتجاعی، در یک زلزله شدید است. بنابر این، رفتار سازه­ها به هنگام رخداد زلزله های متوسط و بزرگ وارد محدوده غیر ارتجاعی میگردند و برای طراحی آنها نیاز به یک تحلیل غیر ارتجاعی است. ولی به دلیل پر هزینه بودن این روش و عدم گستردگی برنامه­های غیر ارتجاعی و سهولت روش ارتجاعی، روشهای تحلیل و طراحی متداول، بر اساس تحلیل ارتجاعی مورد نیاز عموما با استفاده از ضرایب کاهش مقاومت انجام میشود[2].

یکی از مشکلات موجود در زمینه ضریب رفتار در آئین­نامه­های قدیمی، مربوط به تجربی بودن مقادیر پیشنهاد شده بود. یعنی با وجود اینکه ضرایب رفتار تعیین شده در آئین­نامه­های لرزه­ای در نظر داشتند بیانگر رفتار هیستریک، شکل پذیری، مقاومت افزون، میرایی و ظرفیت استهلاک انرژی باشند، مقادیر این ضرایب در آئین نامه های زلزله، اصولا بر اساس مشاهدات عملکرد سیستم­های ساختمانی مختلف، در زلزله­های قوی گذشته، بر مبنای قضاوت مهندسی بود. بر این اساس، پژوهش­های زیادی در این زمینه صورت گرفت تا مقادیری مبتنی بر مطالعات تحقیقاتی و پشتوانه محاسباتی در آئین­نامه­های زلزله بیان شود که در نهایت منجر به اصلاح این ضرایب بر اساس مطالعات علمی شد.

ضریب رفتار اولین بار در گزارش 06-3 ATC در سال 1978 ارائه گشت. در این گزارش، مقادیر پیشنهاد شده برای ضریب رفتار بر اساس نظر مجموعه­ای از مهندسان خبره استوار بود. به همین دلیل روش مشخصی برای تعیین مقدار آن ارائه نشده بود. همچنین در مقررات NEHRP مربوط به سالهای 1997 و 2000 (FEMA369 و FEMA303) که الهام گرفته از 06-3 ATC بود، بر تجربی بودن ضرایب کاهش تاکید شده است[11و13]. در برخی از آئین نامه های طراحی لرزه­ای، مطلبی ناظر در محاسبه این ضرایب ارائه شده، حال آن که در بیشتر آئین­نامه­ها مقادیر آنها بر مبنای قضاوت مهندسی، تجربه و مشاهده عملکرد ساختمان­ها در زلزله­های گذشته و چشم پوشی از تراز مقاومت افزون آن­ها استوار است[15]. از این رو و با توجه به مطالب فوق، ارزیابی ضرایب رفتار و بررسی ارتباط میان پارامترهای مؤثر در آن برای سازه­هایی که مطابق آئین­نامه­های طراحی میشوند، اهمیت ویژه­ای دارد. لذا در اکثر آئین­نامه­های طراحی لرزه­ای جدید، روش­های تعیین آن ذکر شده است.

در این پژوهش بر خلاف آئین­نامه ایران، ضرایب رفتار برای فهم بهتر به اجزای تشکیل دهنده آن تجزیه میشود. البته امروزه در اکثر آیین­نامه­ها، به جای تعریف یک مقدار معین برای یک نوع قاب سازه­ای، اجزای ضریب رفتار برای قاب­های با شکل­پذیری­های مختلف و بسته به لرزه­خیزی منطقه تعریف می شوند، که از جمله آن­ها میتوان به آیین­نامه کانادا اشاره نمود.

با توجه به تحولات زیادی که از زمان تدوین آئین­نامه ایران در طرح ساختمان­ها در برابر زلزله (استاندارد 2800) در سال 1366 تاکنون در امر مهندسی زلزله صورت گرفته است و نیز با وجود کاربرد وسیع این آئین­نامه در طراحی ساختمان­های مختلف کشور، آگاهی از محتوای این آئین­نامه و مفاهیم آن امری مهم میباشد. تدوین اغلب آیین­نامه های کاربردی طرح لرزه­ای ساختمان­ها، با هدف جلوگیری از تلفات جانی و خسارات احتمالی و نیز دستیابی به طرحی اقتصادی برای سازه انجام گرفته­است. از جمله عوامل تأثیر­ گذار در دستیابی به این هدف می­توان به دو عامل مقاومت و شکل­پذیری سازه اشاره کرد. عوامل مذکور از مهمترین پارامترهای موثر در طراحی لرزه­ای بسیاری از آئین­نامه­ها، از جمله استاندارد 2800 است. تأمین این دو پارامتر در روش طراحی آئین­نامه­های مذکور با توجه به برآورد اهداف مورد نظر این آئین­نامه­ها در زلزله­های خفیف، متوسط و شدید میباشد. این اهداف با توجه به انتظاراتی که از رفتار سازه­ها در هنگام وقوع زلزله­هایی که ممکن است در طول مفید ساختمان اتفاق بیافتد و نیز میزان خسارات احتمالی وارده به سازه در حین زلزله در نظر گرفته شده­است.

در دهه­ های اخیر با بررسی نتایج.....


و.....

دانلود فایل

پایان نامه ارشد عمران - ارائه مدل جدیدی از مهاربندهای مقاوم در برابر کمانش و بررسی رفتار لرزه ­ای آن

پایان نامه‌ی کارشناسی ارشد

رشته‌ی مهندسی عمران گرایش سازه

 عنوان :
ارائه مدل جدیدی از مهاربندهای مقاوم در برابر کمانش و بررسی رفتار لرزه ­ای آن



با فرمت قابل ویرایش word

تعداد صفحات: 110  صفحه

تکه های از متن به عنوان نمونه :



یکی از مهمترین حوادث طبیعی که همواره زندگی انسان­ها را دچار دگرگونی کرده و گاهی تمدن­های بشری را با تخریب ساختگاه به نابودی کشانده، زلزله است. از این رو، انسان همواره سعی در شناسایی و مقابله با خطرات ناشی از زلزله داشته و هنوز هم موفق به مهار کامل این انرژی عظیم نشده است. حال با وجود آنکه محققین زیادی در زمینه ساخت و ساز ایمن و مناسب، تحقیقات ارزنده­ای انجام داده­اند، کماکان تعداد زیادی از ساکنین این کره خاکی هر ساله در زیر آوارهای به وجود آمده از زلزله مدفون می­گردند و سازه­های بسیاری کارایی خود را پس از زلزله از دست می­دهند یا متلاشی می­شوند.

ایران از نظر لرزه­خیزی در منطقه فعال جهان قرار دارد و به گواهی اطلاعات مستند علمی و مشاهدات قرن بیستم، از خطرپذیرترین مناطق جهان در اثر زمین­لرزه­های پرقدرت محسوب می­شود. در حال حاضر ایران در صدر کشورهایی است که وقوع زلزله در آن با تلفات جانی بالا همراه است و در سال­های اخیر به طور متوسط هر پنج سال یک زمین لرزه با صدمات جانی و مالی بسیار بالا در نقطه­ای از کشور رخ داده است. گرچه جلوگیری کامل از خسارات ناشی از زلزله­های شدید بسیار دشوار است لیکن با افزایش سطح اطلاعات در رابطه با لرزه­خیزی کشور، شناسایی و مطالعه دقیق وضعیت   آسیب­پذیری ساختمان­ها، ایمن­سازی و مقاوم­سازی صحیح و اصولی آن­ها، می توان تا حد مطلوب تلفات و خسارات ناشی از زلزله­های آتی را کاهش داد.]1[

در راستای شناسایی و مهار این پدیده، محققین همواره سعی داشته­اند تا آیین­نامه­های بسیاری را در سراسر دنیا برای محاسبه و ساخت سازه­های مقاوم در برابر زلزله تهیه کنند و روش­های بسیاری برای محاسبه این نیرو و طراحی سازه­ها در برابر آن ارائه دهند. پس از محاسبه نیروی زلزله، روش­هایی جهت طراحی ساختمان مقاوم در برابر زلزله مطرح می­شوند که این روش­ها را می­توان به دو دسته کلاسیک (سنتی) و مدرن تقسیم­بندی کرد.

در روش­های کلاسیک، طراحی بر اساس حداکثر نیروی اعمال شده به ساختمان، که با ترکیب نیروهای احتمالی بیان­شده در آیین­نامه­های مختلف به دست می­آید، انجام می­شود. تک­تک اجزای سازه را براساس روش مقاومت نهایی یا نیروی حداکثر طراحی می­کنند. اما در روش­های مدرن، پایداری سازه با روش طراحی براساس عملکرد نیز مطرح شده است.]2[

در سیستم­های سازه­ای معمولا دو عامل برای طراحان بسیار مهم است. اول ایمنی سازه و دوم راحتی ساکنین در برابر بارهای خارجی همچون باد و زلزله. برای رسیدن به این هدف دو عامل جابجایی و شتاب مطلق به ترتیب اثرگذارند و بایستی کنترل شوند. در این راستا سیستم­های مختلفی ارائه شده است که به­طور کلی رفتار سازه را به گونه­ای تغییر می­دهند که انرژی ورودی زلزله، به اجزای اصلی سازه صدمه­ای وارد نکند.

بعضی از سیستم­ها را می­توان بر روی سازه­های موجود نیز پیاده نمود که در صورت لزوم بعد از رخداد زلزله نیز قابل تعویض و یا تعمیر باشند. با توجه به اینکه سازه­های غیر­مقاوم در برابر زلزله در کشورمان زیاد یافت می­شوند و با توجه به این نکته که استفاده از سیستم­های الحاقی به نحو بسیار مطلوبی پاسخ دینامیکی سازه­ها را کاهش می­دهد، لذا استفاده از این سیستم­ها در کشورمان حائز اهمیت می­باشد.

گرچه بارهای دینامیکی وارد بر سیستم­های سازه­ای ممکن است ناشی از عوامل مختلفی مانند اثر باد و موج و حرکت خودروها باشد، بدون شک یکی از انواع این بارهای دینامیکی که برای مهندسین سازه از بیشترین اهمیت برخوردار بوده، تحریکی است که توسط زلزله­ها ایجاد می­شود. البته اهمیت مساله زلزله تا حدودی به علت نتایج زیان­باری است که یک زلزله در یک منطقه پرجمعیت به­جا    می­گذارد. از آنجا که طراحی سازه­های اقتصادی با معماری­ها و ابعاد گوناگون که قادر به تحمل نیروهای حاصل از یک زمین­لرزه قوی باشند، توانایی بالایی را در هنر و علم مهندسی طلب می­کند، منطقی به نظر می­رسد که رشته مهندسی زلزله به عنوان چارچوبی که در آن کاربرد تئوری­ها و تکنیک­های ارائه شده در دینامیک سازه­ها و ... به نمایش گذاشته می­شود، مورد استفاده قرار گیرد.

توانایی روش­های متداول طراحی و ساخت سازه­های موجود بسیار محدود می­باشد و پاسخگوی نیازهای روزافزون طراحی سازه­های جدید نیست. به عنوان مثال بلندتر شدن ساختمان­ها به دلیل کمبود زمین در کلان شهرها و برآورده کردن نیازهای معماری جدید با فرم­های غیر معمول از جمله مشکلاتی است که نیاز به تکنولوژی­های جدید در امر ساخت و ساز را در کشورمان نمایان    می­کند.

 

1-2. لزوم انجام تحقیق حاضر

سیستم­های سازه­ای مختلفی جهت مقابله با نیروهای جانبی ناشی از زلزله در ساختمان­های فولادی مورد استفاده قرار گرفته است که می­توان به سیستم قاب­ خمشی مقاوم، سیستم    مهاربندی­شده همگرا و سیستم­ مهاربندی­شده واگرا اشاره کرد. هر یک از این سیستم­ها به نوبه خود دارای معایب و محاسن مربوط به خود می­باشند که در طول سال­های اخیر موضوع تحقیق علم مهندسی زلزله بوده است.

در کشور ایران استفاده از سیستم­های مهاربندی همگرا در بین مهندسین سازه بسیار رایج می­باشد. لذا پرداختن به این موضوع و بیان معایب این سیستم­ها و ارائه راهکارهای کاربردی در زمینه رفع این معایب، می­تواند کمک شایانی در پیشرفت صنعت ساختمان­سازی ایران در جهت ایمن­تر شدن ساختمان­ها نماید.

یکی از انواع سیستم­های مهاربند همگرا، سیستم مهاربندهای مقاوم در برابر کمانش یا به اختصار BRB[1] می­باشد. این سیستم یکی از قویترین سیستم­های موجود در امر کنترل ارتعاشات نامطلوب سازه­ها در برابر نیروهای جانبی می­باشد و امروزه در اکثر نقاط جهان از این سیستم جهت مستهلک کردن انرژی ناشی از زلزله، به وفور استفاده می­شود.

در این نوع مهاربندها، هدف رسیدن مهاربند تحت بار محوری فشاری به حد تسلیم با جلوگیری کردن از کمانش عضو می­باشد که این امر توسط یک مکانیزم خارجی انجام می­شود. بنابراین مهاربند هم در کشش و هم در فشار بدون اینکه کمانش کند، تسلیم می­شود. همچنین از آنجایی­که کمانش مهاربند جهت استهلاک انرژی مطلوب نیست، این سیستم که رفتار الاستو­پلاستیک دارد، جهت مستهلک کردن انرژی زلزله بسیار موثر عمل می­کند.]3[

در تحقیق حاضر، مطالعاتی بر روی مهاربندهای مقاوم در برابرکمانش به عنوان یک سیستم مقاوم در برابر نیروهای ناشی از زلزله انجام شده است. از آنجایی­که نصب    سیستم­های مقاوم در برابر زلزله از نظر اقتصادی و مقاوم­سازی، کمک شایانی به رفتار مناسب سازه در برابر بارهای دینامیکی می­کند، تحقیق بر روی این سیستم­ها دارای اهمیت زیادی می­باشد.

مهاربندهای مقاوم در برابر کمانش دارای محاسن زیادی نسبت به مهاربندهای همگرای معمولی می­باشند و از نظر سازه­ای نیز رفتار مطلوبی در برابر نیروهای جانبی از خود نشان     می­دهند. در کنار این محاسن، یک سری معایب برای این مهاربندها بیان شده است که در زیر به این معایب اشاره می­شود:

  • ساخت مهاربندهای BRB تا حدودی پیچیده و پرهزینه بوده و نیاز به تکنولوژی روز دارد.
  • به دلیل پیچیده بودن ساخت، تولید مهاربندهای BRB در انحصار شرکت­های خاصی است.
  • در صورت استفاده از فولاد با بازه جاری شدن وسیع به عنوان هسته مقطع، نیروهای اضافه به سازه اعمال خواهد شد.]3[

 

 

 

1-3.  اهداف تحقیق

هدف اصلی این مطالعه، تحقیق بر روی یک نوع مهاربند مقاوم در برابرکمانش با طرح جدید است که معایب ذکر شده برای مهاربندهای BRB، در این طرح رفع شده است. طرح این مهاربند در واقع برگرفته از شکل مهاربند مقاوم در برابرکمانش پیشنهاد شده توسط سریدهارا[2] است.]16[ مهاربند جدید دارای تکنولوژی ساخت ساده­ای بوده و نیازی به تکنولوژی­های پیچیده در ساخت ندارد. همچنین با اصلاحات در نظر گرفته شده، این مهاربند جدید در زلزله­های شدیدتر پایداری سازه را بیشتر از مهاربند کنونی حفظ خواهد کرد. همچنین از ظرفیت باربری مصالح بکار رفته نیز بیشتر از مدل­های موجود کنونی استفاده خواهد شد.

در این طرح، هسته مقطع از فولاد جدار نازک[3] می­باشد. غلاف نیز طوری طراحی    می­شود که در زلزله­های شدید وقتی کاهش طول ناشی از نیروی فشاری وارد شده در هسته از یک حد معینی بیشتر شد، مقطع غلاف به عنوان یک عضو فشاری کمکی، درصدی از نیروهای فشاری هسته را تحمل کند. به این­ترتیب که یک خلاصی بین اتصال و غلاف ایجاد می­شود که در تغییر شکل­های مورد نظر با به هم چسبیدن اتصال و غلاف، درصدی از نیروی فشاری توسط غلاف تحمل شود. همچنین طراحی غلاف بایستی طوری باشد که مقطع غلاف تحت نیروهای فشاری به تسلیم برسد، به عبارت دیگر بایستی از کمانش جانبی غلاف جلوگیری شود. در این حالت، استهلاک انرژی نسبت به مهاربند مقاوم در برابرکمانش کنونی بیشتر خواهد بود و در نتیجه، سازه در مقابل نیروهای جانبی از پایداری بیشتری برخوردار خواهد بود.

بنابراین در این مطالعه با توجه به نیروهای وارد بر هسته، درابتدا یک مقطع بهینه برای هسته طراحی شده و در مرحله بعد، غلاف طوری طرح می­شود که در زلزله­های شدیدتر وارد عمل شده و پایداری سازه را حفظ کند.

در این تحقیق جهت حصول نتایج مطلوب، فرضیات زیر در نظر گرفته شده است:

  1. با طراحی بهینه شکل مقطع هسته، امکان استفاده از ظرفیت استهلاک انرژی آن بدون بکارگیری پرکننده فراهم می­شود.
  2. با طراحی غلافی با شکل بهینه و فاصله مناسب با هسته، تسلیم هسته در بارهای لرزه­ای طراحی امکان­پذیر می­شود.
  3. استهلاک انرژی در زلزله­های شدید با طراحی سیستمی برای استفاده از ظرفیت باربری فشاری غلاف نسبت به مهاربندهای ضد کمانش کنونی بیشتر می­شود.

 

1-4. فصول پایان­نامه

در این تحقیق، در فصل دوم سیستم­های باربر جانبی در ساختمان­های فولادی مورد بررسی قرار گرفته، مزایا و معایب آن­ها بیان شده است. در فصل سوم به معرفی سیستم مهاربندهای مقاوم در برابر کمانش پرداخته و با مطالعه تحقیقات انجام شده در گذشته، محاسن این سیستم مهاربند در برابر سیستم­های قدیمی مورد ارزیابی قرار گرفته است. در ادامه محدودیت­های اجرای سیستم مهاربند مقاوم در برابر کمانش، در ایران ذکر شده است. در جهت رفع این کاستی­ها، در فصل چهارم ایده مهاربند جدید مقاوم در برابر کمانش بیان شده و با ارائه روش طراحی به بررسی رفتار لرزه­ای این مهاربند پرداخته شده است. در نهایت در فصل پنجم با تحلیل و بررسی بر روی پارامترهای مختلف مهاربند جدید مقاوم در برابر کمانش، یک مدل بهینه برای این سیستم ارائه شده است.....


دانلود فایل